検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Development of delayed gamma-ray spectroscopy for nuclear safeguards, 2; Designing a compact DGS instrument

Rossi, F.; Abbas, K.*; 小泉 光生; Lee, H.-J.; Rodriguez, D.; 高橋 時音

Proceedings of INMM & ESARDA Joint Virtual Annual Meeting (Internet), 7 Pages, 2021/08

The Japan Atomic Energy Agency is developing the Delayed Gamma-ray Spectroscopy (DGS) non-destructive assay technique to quantify the fissile-nuclide content in small samples of mixed nuclear materials. One of our primary goals is to develop a compact and efficient DGS instrument to be easily installable into analytical laboratories. The instrument should include an external neutron source and a gamma-ray detection system along with other supporting systems like sample transfer and neutron monitoring. One of the challenges is to design a compact and efficient moderator for commercial neutron sources (e.g. neutron generators or sealed radioactive sources) that emit neutrons with high energy. However, to be able to enhance the gamma-ray signal from fissile materials, thermal neutrons are best due to their higher fission cross-sections. The choice of viable neutron source (neutron spectrum and strength) depends on several considerations (e.g. sample type and interrogation pattern), but also affect the gamma-ray measurement and the consequence analysis. In this work, we will first describe the evaluation results of our Delayed Gamma-ray Test Spectrometer using a $$^{252}$$Cf source (DGTS-C) from the first experiment carried out in PERLA in collaboration with the European Commission, Joint Research Centre. In association, we will describe how it provided guidance for our demonstration irradiator. Further, we will present our final moderator design concept for a deuterium-deuterium (D-D) neutron generator and present the latest results of data-model comparisons, including those with our PUNITA results. This work is supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) under the subsidy for the "promotion for strengthening nuclear security and the like". This work was done under the agreement between JAEA and EURATOM in the field of nuclear material safeguards research and development.

論文

JAEA-JRC collaborative development of delayed gamma-ray spectroscopy for nuclear material evaluation, 3; Fissile mass estimation with uranium samples

Rossi, F.; 小泉 光生; Lee, H.-J.; Rodriguez, D.; 高橋 時音; Abbas, K.*; Bogucarska, T.*; Crochemore, J.-M.*; Pedersen, B.*; Varasano, G.*

61st Annual Meeting of the Institute of Nuclear Materials Management (INMM 2020), Vol.2, p.907 - 911, 2021/00

Delayed Gamma-ray Spectroscopy (DGS) is a nondestructive assay technique with the capability to quantify the fissile composition of small nuclear material samples from reprocessing plants. In recent years, the Japan Atomic Energy Agency in collaboration with the Joint Research Centre performed several experiments using uranium and plutonium standard samples. In this paper, we present some of our recent experiment results showing the feasibility of DGS for fissile mass estimation. In particular, we interrogate uranium samples of different enrichment and we are showing that we were able to qualify significant peaks even for a depleted uranium sample above 2.7 MeV. Applying correction factors for neutron self-shielding and gamma self-absorption, we obtained a mass linear correlation when considering total integrated counts above 3.3 MeV as well as specific individual peak counts. This work is supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) under the subsidy for the "promotion for strengthening nuclear security and the like". This work was done under the agreement between JAEA and EURATOM in the field of nuclear material safeguards research and development.

2 件中 1件目~2件目を表示
  • 1